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In-Situ Production ~

Construction Materials from Lunar and Martian Regolith

* Construction materials are needed for landing/

launching pads, radiation shielding, and other
structures.

e External heating of regolith

— Needs lots of energy
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Self-Propagating High-Temperature Synthesis
(SHS)

* Upon ignition of a mixture,
exothermic reactions cause
self-sustained propagation | I <— lIgnition coil

of the combustion wave.

* Advantages ggﬁw ”;,z% . oduct
il <— Combustion Front

— Low energy for ignition
— High temperatures generated by <— Initial Mixture
the reaction heat release.

e Used for synthesis of
numerous ceramics and
other compounds
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Objectives

* Explore the feasibility of producing
construction materials by SHS on the Moon
and Mars.

* Reveal the reaction mechanisms of regolith/
magnesium mixtures.
— Three regolith simulants:

* JSC-1A lunar regolith simulant
* JSC-Mars-1A Martian regolith simulant
* Mars Mojave Martian regolith simulant



Combustion of et
Regolith-based Mixtures

JSC-1A
Content (wt
%)

Energetic Role of

Research Group Additive Regolith

Martirosyan and Luss

(2006) Ti+B Inert <60
Corrias et al. (2012) FeTiO, + Al Inert <30
Faierson et al. (2010) Al Active <67

Combustion of Al/JSC-1A
required significant preheating.

Faierson et al. PISCES and JUSTSAP Conference, 2008.




flrﬁf &{\céim_
Prior Research of Our Team

* Thermodynamic calculations of the adiabatic
flame temperatures and combustion products.
— For Mg, the temperatures are higher than for Al
— Maximum adiabatic temperature: 1417 °C at
26 wt% Mg (equal to the melting point of Si).

* Experiments demonstrated that mixtures of
JSC-1A lunar regolith simulant with magnesium
are combustible with no preheating.

C. White, F. Alvarez, E. Shafirovich, J. Thermophys. Heat Tr. 25 (2011) 620—-625.
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Prior Research of Our Team

Minimizing the wt% content of Magnesium

* Planetary Ball Milled (PBM) JSC-1A powder
decreased Mg content to 13 wt%.

* Mg wt% was minimized to 8% when
preheating the mixture (PBM JSC-1A) to
100°C.

F. Alvarez, C. White, A.K. Narayana Swamy, E. Shafirovich, Proc. Combust. Inst. 34 (2013) 2245-2252.
A. Delgado, E. Shafirovich, Combust. Flame 160 (2013) 1876-1882.
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Prior Research of Our Team

Producing stronger and denser products using SHS compaction
* 66% increase in density

* Compression stress: 11.8 MPa

— Typical strength of common bricks: 9.5 MPa

o Argon product SHS compaction

A. Delgado, E. Shafirovich, Combust. Flame 160 (2013) 1876-1882. 10



Simplified Compositions ™
of Regolith Simulants

Concentration, wt%
Compound
JSC-1A [6] JSC-Mars-1A [7] | Mars Mojave [7]

Si0, 45.7 43.48 49.4
ALLO, 16.2 22.09 17.1
Fe,0, 12.4 16.08 10.87
Ca0 10.0 6.05 10.45
MgO 8.7 4.22 6.08
Na,O 3.2 2.34 3.28
TiO, 1.9 3.62 1.09

Si0, + 2 Mg = 2 MgO + Si
Fe,O; + 3Mg = 3MgO + 2Fe

11



\{\éim_
High-Energy Ball Milling

Zirconia-coated bowls
and zirconia grinding
balls

Argon environment
Mixture-ball mass ratio:
1:4

— 1100 rpm

N ——— — 4 milling-cooling cycles

Planetary ball mill (10-min milling and 75-
(Fritsch Pulverisette 7 Premium Line) min COOImg)

12
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Mixing

* Three-dimensional
inversion kinematics
tumbler mixer

e Regolith is mixed with Mg
(10, 20, 30.., wt%).

Inversina 2L Mixer

13



Preparation of Pellets

-

e Compaction in an uniaxial | \:.
hydraulic press -

— Mass: 5g L]
— Diameter: 1.3cm e '

— Force: 2 metric tons .‘y."

————

* Channel drilled for thermocouple

3

Compacted
Powder ”



Experimental Setup

Xas
Ar Tank B

Vacuum
Pump

/14
Wf ag; <. | to

“{SETR_
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Mars Mojave/Mg Combustion

Mars Mojave/Mg pellet (30 wt% Mg)
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Combustion Temperature

Mars Mojave/Mg Combustion Temperatures
2500
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* Adiabatic flame temperatures were calculated using THERMO software

* Reasonable agreement between experimental and predicted data is

observed for Mars Mojave simulant
17



Combustion Front Velocity

Mars Mojave Avg. Propagation Velocity

N w
o ow s

Velocity (mm/s)
o -

o

10 20 30
wt% Mg

40
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* The combustion front velocity increases with increasing Mg

concentration



Microgravity Experiments

* Parabolic flights: NASA Johnson Space Center
— June 2011:JSC-1A
— June 2012:JSC-1A
— July 2013: JSC-1A, JSC-Mars-1A, Mars Mojave

19
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Microgravity Experiments in July 2013

* Samples made with 25 wt% Mg
* Lunar and Martian simulants

- JSC-1A

— JSC-Mars-1A

Mars Mojave 20



Combustion Characteristics at "
Reduced and Normal Gravity

Temperature Front Velocity
* Combustion temperatures * The combustion front velocity
measured by thermocouples determined from video records.
1600 mlg [ i - lg
1400 m0-g
%1200 —\g 4.0
; 1000 - é
;é; 200 ‘E 3.0
g 600 i 2.0
7 JSC-1A JSC-Mars-1A Mojave Mars | JSC-1A JSC-Mars-1A Mojave Mars

e Virtually no gravity effect.

e Mars-1A has the best combustion characteristics.
21



Simplified Compositions ™
of Regolith Simulants

Concentration, wt%
Compound
JSC-1A [6] JSC-Mars-1A [7] | Mars Mojave [7]

Si0, 45.7 43.48 49.4
ALLO, 16.2 22.09 17.1
Fe,0, 12.4 16.08 10.87
Ca0 10.0 6.05 10.45
MgO 8.7 4.22 6.08
Na,O 3.2 2.34 3.28
TiO, 1.9 3.62 1.09

Si0, +2 Mg = 2 MgO +Si
Fe,O, + 3Mg = 3MgO + 2Fe

22
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Differential Thermal Analysis (DTA)

* Employed to investigate reaction mechanisms
of regolith/magnesium mixtures

* Examined mixture composed of JSC-1A lunar
regolith with 26 wt% Mg

* Samples cooled in argon flow (20 mL/min)

e X-ray diffraction analysis (XRD) employed to
examine the products
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Differential Thermal Analysis (DTA

c-DTA® /K
| exo

4 1

34

24
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* DTA curve shows exothermic peak at 550°C
* Melting point of Mg: 650°C
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XRD Analysis of Quenched Products )

To investigate reaction, analysis was stopped at 500°C, 550°C, and 590°C

Mg
500°C
==550°C
Mg 590°C
~ Mg
=
2 Mg Mg Mg
= - = Mg
E MgO
W MgO
- "_—‘ ~ e W
MgO
MgO
20 30 40 50 60 70
20

The reaction is complete at a temperature between 550 C and 590 C

Magnesium is solid throughout reaction ( T

=650°C)

melting,Mg

25



DTA of Regolith/Mg Mixtures

Regolith Sio, Fe,0,
Simulant WS -
Mars Mojave 49.4 10.87
JSC-1A 45.7 12.4
JSC-Mars-1A 43.48 16.08

LSETR_
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DTA of Mg/SiO02 and Mg/Fe203 Mixtures

. ¢c-DTA® /K
* Mixture 1 | oxo
41 wt% Mg / 20 wt% Fe,0,/ 39 wt% SiO, — |

. 71 Mg/sio, \o\
* 29 Mg/Fe,0,

* Mixture 2 =
38 wt% Mg / 31 wt% Fe,0;/ 31 wt% SiO, / &
* 55 wt% Mg/SiO, 4
* 45 wt% Mg/Fe,O, 5
* Mixture 3 e e
37 wt% Mg / 42 wt% Fe,0,/ 21 wt% SiO, /
* 38 wt% Mg/Si0, S|02 + 2Mg 9 ZMgO + Si

* 62 wt% Mg/Fe,O,

Fe,O; + 3Mg = 3MgO + 2Fe

27
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Conclusions

* Martian regolith simulants form combustible mixtures
with Mg.
* JSC-Mars-1A exhibits the best combustion
characteristics.
— JSC-Mars-1A is characterized by the highest concentration
of iron oxide.

* DTA and XRD have shown that Fe,O, may play a more
important role than SiO, in the combustion of lunar
and Martian regolith simulants with Mg — Iron-rich
regoliths are recommended.
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